- Dec 06, 2023
-
-
See the new `Note [Dead code may contain type confusions]`. Fixes #23862.
-
- Jul 15, 2023
-
-
This patch finally (I hope) nails the question of whether (forall a. ty) and (forall a -> ty) are `eqType`: they aren't! There is a long discussion in #22762, plus useful Notes: * Note [ForAllTy and type equality] in GHC.Core.TyCo.Compare * Note [Comparing visiblities] in GHC.Core.TyCo.Compare * Note [ForAllCo] in GHC.Core.TyCo.Rep It also establishes a helpful new invariant for ForAllCo, and ForAllTy, when the bound variable is a CoVar:in that case the visibility must be coreTyLamForAllTyFlag. All this is well documented in revised Notes.
-
- Sep 15, 2022
-
-
- Mar 16, 2022
-
-
Previously, we let `Unboxed` win in `lubBoxity`, which is unsoundly optimistic in terms ob Boxity analysis. "Unsoundly" in the sense that we sometimes unbox parameters that we better shouldn't unbox. Examples are #18907 and T19871.absent. Until now, we thought that this hack pulled its weight becuase it worked around some shortcomings of the phase separation between Boxity analysis and CPR analysis. But it is a gross hack which caused regressions itself that needed all kinds of fixes and workarounds. See for example #20767. It became impossible to work with in !7599, so I want to remove it. For example, at the moment, `lubDmd B dmd` will not unbox `dmd`, but `lubDmd A dmd` will. Given that `B` is supposed to be the bottom element of the lattice, it's hardly justifiable to get a better demand when `lub`bing with `A`. The consequence of letting `Boxed` win in `lubBoxity` is that we *would* regress #2387, #16040 and parts of #5075 and T19871.sumIO, until Boxity and CPR are able to communicate better. Fortunately, that is not the case since I could tweak the other source of optimism in Boxity analysis that is described in `Note [Unboxed demand on function bodies returning small products]` so that we *recursively* assume unboxed demands on function bodies returning small products. See the updated Note. `Note [Boxity for bottoming functions]` describes why we need bottoming functions to have signatures that say that they deeply unbox their arguments. In so doing, I had to tweak `finaliseArgBoxities` so that it will never unbox recursive data constructors. This is in line with our handling of them in CPR. I updated `Note [Which types are unboxed?]` to reflect that. In turn we fix #21119, #20767, #18907, T19871.absent and get a much simpler implementation (at least to think about). We can also drop the very ad-hoc definition of `deferAfterPreciseException` and its Note in favor of the simple, intuitive definition we used to have. Metric Decrease: T16875 T18223 T18698a T18698b hard_hole_fits Metric Increase: LargeRecord MultiComponentModulesRecomp T15703 T8095 T9872d Out of all the regresions, only the one in T9872d doesn't vanish in a perf build, where the compiler is bootstrapped with -O2 and thus SpecConstr. Reason for regressions: * T9872d is due to `ty_co_subst` taking its `LiftingContext` boxed. That is because the context is passed to a function argument, for example in `liftCoSubstTyVarBndrUsing`. * In T15703, LargeRecord and T8095, we get a bit more allocations in `expand_syn` and `piResultTys`, because a `TCvSubst` isn't unboxed. In both cases that guards against reboxing in some code paths. * The same is true for MultiComponentModulesRecomp, where we get less unboxing in `GHC.Unit.Finder.$wfindInstalledHomeModule`. In a perf build, allocations actually *improve* by over 4%! Results on NoFib: -------------------------------------------------------------------------------- Program Allocs Instrs -------------------------------------------------------------------------------- awards -0.4% +0.3% cacheprof -0.3% +2.4% fft -1.5% -5.1% fibheaps +1.2% +0.8% fluid -0.3% -0.1% ida +0.4% +0.9% k-nucleotide +0.4% -0.1% last-piece +10.5% +13.9% lift -4.4% +3.5% mandel2 -99.7% -99.8% mate -0.4% +3.6% parser -1.0% +0.1% puzzle -11.6% +6.5% reverse-complem -3.0% +2.0% scs -0.5% +0.1% sphere -0.4% -0.2% wave4main -8.2% -0.3% -------------------------------------------------------------------------------- Summary excludes mandel2 because of excessive bias Min -11.6% -5.1% Max +10.5% +13.9% Geometric Mean -0.2% +0.3% -------------------------------------------------------------------------------- Not bad for a bug fix. The regression in `last-piece` could become a win if SpecConstr would work on non-recursive functions. The regression in `fibheaps` is due to `Note [Reboxed crud for bottoming calls]`, e.g., #21128.
-
- Mar 14, 2022
-
-
As `Note [Demand analysis for recursive data constructors]` describes, we now refrain from unboxing recursive data type arguments, for two reasons: 1. Relating to run/alloc perf: Similar to `Note [CPR for recursive data constructors]`, it seldomly improves run/alloc performance if we just unbox a finite number of layers of a potentially huge data structure. 2. Relating to ghc/alloc perf: Inductive definitions on single-product recursive data types like the one in T11545 will (diverge, and) have very deep demand signatures before any other abortion mechanism in Demand analysis is triggered. That leads to great and unnecessary churn on Demand analysis when ultimately we will never make use of any nested strictness information anyway. Conclusion: Discard nested demand and boxity information on such recursive types with the help of `Note [Detecting recursive data constructors]`. I also implemented `GHC.Types.Unique.MemoFun.memoiseUniqueFun` in order to avoid the overhead of repeated calls to `GHC.Core.Opt.WorkWrap.Utils.isRecDataCon`. It's nice and simple and guards against some smaller regressions in T9233 and T16577. ghc/alloc performance-wise, this patch is a very clear win: Test Metric value New value Change --------------------------------------------------------------------------------------- LargeRecord(normal) ghc/alloc 6,141,071,720 6,099,871,216 -0.7% MultiLayerModulesTH_OneShot(normal) ghc/alloc 2,740,973,040 2,705,146,640 -1.3% T11545(normal) ghc/alloc 945,475,492 85,768,928 -90.9% GOOD T13056(optasm) ghc/alloc 370,245,880 326,980,632 -11.7% GOOD T18304(normal) ghc/alloc 90,933,944 76,998,064 -15.3% GOOD T9872a(normal) ghc/alloc 1,800,576,840 1,792,348,760 -0.5% T9872b(normal) ghc/alloc 2,086,492,432 2,073,991,848 -0.6% T9872c(normal) ghc/alloc 1,750,491,240 1,737,797,832 -0.7% TcPlugin_RewritePerf(normal) ghc/alloc 2,286,813,400 2,270,957,896 -0.7% geo. mean -2.9% No noteworthy change in run/alloc either. NoFib results show slight wins, too: -------------------------------------------------------------------------------- Program Allocs Instrs -------------------------------------------------------------------------------- constraints -1.9% -1.4% fasta -3.6% -2.7% reverse-complem -0.3% -0.9% treejoin -0.0% -0.3% -------------------------------------------------------------------------------- Min -3.6% -2.7% Max +0.1% +0.1% Geometric Mean -0.1% -0.1% Metric Decrease: T11545 T13056 T18304
-
- Nov 11, 2021
-
-
Fixes #20598, which is mostly a duplicate of #18824 but for GHC 9.2.
-
- Oct 24, 2021
-
-
This patch fixes some abundant reboxing of `DynFlags` in `GHC.HsToCore.Match.Literal.warnAboutOverflowedLit` (which was the topic of #19407) by introducing a Boxity analysis to GHC, done as part of demand analysis. This allows to accurately capture ad-hoc unboxing decisions previously made in worker/wrapper in demand analysis now, where the boxity info can propagate through demand signatures. See the new `Note [Boxity analysis]`. The actual fix for #19407 is described in `Note [No lazy, Unboxed demand in demand signature]`, but `Note [Finalising boxity for demand signature]` is probably a better entry-point. To support the fix for #19407, I had to change (what was) `Note [Add demands for strict constructors]` a bit (now `Note [Unboxing evaluated arguments]`). In particular, we now take care of it in `finaliseBoxity` (which is only called from demand analaysis) instead of `wantToUnboxArg`. I also had to resurrect `Note [Product demands for function body]` and rename it to `Note [Unboxed demand on function bodies returning small products]` to avoid huge regressions in `join004` and `join007`, thereby fixing #4267 again. See the updated Note for details. A nice side-effect is that the worker/wrapper transformation no longer needs to look at strictness info and other bits such as `InsideInlineableFun` flags (needed for `Note [Do not unbox class dictionaries]`) at all. It simply collects boxity info from argument demands and interprets them with a severely simplified `wantToUnboxArg`. All the smartness is in `finaliseBoxity`, which could be moved to DmdAnal completely, if it wasn't for the call to `dubiousDataConInstArgTys` which would be awkward to export. I spent some time figuring out the reason for why `T16197` failed prior to my amendments to `Note [Unboxing evaluated arguments]`. After having it figured out, I minimised it a bit and added `T16197b`, which simply compares computed strictness signatures and thus should be far simpler to eyeball. The 12% ghc/alloc regression in T11545 is because of the additional `Boxity` field in `Poly` and `Prod` that results in more allocation during `lubSubDmd` and `plusSubDmd`. I made sure in the ticky profiles that the number of calls to those functions stayed the same. We can bear such an increase here, as we recently improved it by -68% (in b760c1f7). T18698* regress slightly because there is more unboxing of dictionaries happening and that causes Lint (mostly) to allocate more. Fixes #19871, #19407, #4267, #16859, #18907 and #13331. Metric Increase: T11545 T18698a T18698b Metric Decrease: T12425 T16577 T18223 T18282 T4267 T9961
-
- Oct 22, 2021
-
-
In #20539 we had a type ```hs newtype Measured a = Measured { unmeasure :: () -> a } ``` and `isRecDataCon Measured` recursed into `go_arg_ty` for `(->) ()`, because `unwrapNewTyConEtad_maybe` eta-reduced it. That triggered an assertion error a bit later. Eta reducing the field type is completely wrong to do here! Just call `unwrapNewTyCon_maybe` instead. Fixes #20539 and adds a regression test T20539.
-
- Oct 06, 2021
-
-
For #16040 and #2387.
-
- Oct 05, 2021
-
-
In #18824 we saw that the Simplifier didn't nuke a CPR signature of a join point when it pushed a continuation into it when it better should have. But join points are local, mostly non-exported bindings. We don't use their CPR signature anyway and would discard it at the end of the Core pipeline. Their main purpose is to propagate CPR info during CPR analysis and by the time worker/wrapper runs the signature will have served its purpose. So we zap it! Fixes #18824.
-
- Sep 30, 2021
-
-
This patch enables worker/wrapper for nested constructed products, as described in `Note [Nested CPR]`. The machinery for expressing Nested CPR was already there, since !5054. Worker/wrapper is equipped to exploit Nested CPR annotations since !5338. CPR analysis already handles applications in batches since !5753. This patch just needs to flip a few more switches: 1. In `cprTransformDataConWork`, we need to look at the field expressions and their `CprType`s to see whether the evaluation of the expressions terminates quickly (= is in HNF) or if they are put in strict fields. If that is the case, then we retain their CPR info and may unbox nestedly later on. More details in `Note [Nested CPR]`. 2. Enable nested `ConCPR` signatures in `GHC.Types.Cpr`. 3. In the `asConCpr` call in `GHC.Core.Opt.WorkWrap.Utils`, pass CPR info of fields to the `Unbox`. 4. Instead of giving CPR signatures to DataCon workers and wrappers, we now have `cprTransformDataConWork` for workers and treat wrappers by analysing their unfolding. As a result, the code from GHC.Types.Id.Make went away completely. 5. I deactivated worker/wrappering for recursive DataCons and wrote a function `isRecDataCon` to detect them. We really don't want to give `repeat` or `replicate` the Nested CPR property. See Note [CPR for recursive data structures] for which kind of recursive DataCons we target. 6. Fix a couple of tests and their outputs. I also documented that CPR can destroy sharing and lead to asymptotic increase in allocations (which is tracked by #13331/#19326) in `Note [CPR for data structures can destroy sharing]`. Nofib results: ``` -------------------------------------------------------------------------------- Program Allocs Instrs -------------------------------------------------------------------------------- ben-raytrace -3.1% -0.4% binary-trees +0.8% -2.9% digits-of-e2 +5.8% +1.2% event +0.8% -2.1% fannkuch-redux +0.0% -1.4% fish 0.0% -1.5% gamteb -1.4% -0.3% mkhprog +1.4% +0.8% multiplier +0.0% -1.9% pic -0.6% -0.1% reptile -20.9% -17.8% wave4main +4.8% +0.4% x2n1 -100.0% -7.6% -------------------------------------------------------------------------------- Min -95.0% -17.8% Max +5.8% +1.2% Geometric Mean -2.9% -0.4% ``` The huge wins in x2n1 (loopy list) and reptile (see #19970) are due to refraining from unboxing (:). Other benchmarks like digits-of-e2 or wave4main regress because of that. Ultimately there are no great improvements due to Nested CPR alone, but at least it's a win. Binary sizes decrease by 0.6%. There are a significant number of metric decreases. The most notable ones (>1%): ``` ManyAlternatives(normal) ghc/alloc 771656002.7 762187472.0 -1.2% ManyConstructors(normal) ghc/alloc 4191073418.7 4114369216.0 -1.8% MultiLayerModules(normal) ghc/alloc 3095678333.3 3128720704.0 +1.1% PmSeriesG(normal) ghc/alloc 50096429.3 51495664.0 +2.8% PmSeriesS(normal) ghc/alloc 63512989.3 64681600.0 +1.8% PmSeriesV(normal) ghc/alloc 62575424.0 63767208.0 +1.9% T10547(normal) ghc/alloc 29347469.3 29944240.0 +2.0% T11303b(normal) ghc/alloc 46018752.0 47367576.0 +2.9% T12150(optasm) ghc/alloc 81660890.7 82547696.0 +1.1% T12234(optasm) ghc/alloc 59451253.3 60357952.0 +1.5% T12545(normal) ghc/alloc 1705216250.7 1751278952.0 +2.7% T12707(normal) ghc/alloc 981000472.0 968489800.0 -1.3% GOOD T13056(optasm) ghc/alloc 389322664.0 372495160.0 -4.3% GOOD T13253(normal) ghc/alloc 337174229.3 341954576.0 +1.4% T13701(normal) ghc/alloc 2381455173.3 2439790328.0 +2.4% BAD T14052(ghci) ghc/alloc 2162530642.7 2139108784.0 -1.1% T14683(normal) ghc/alloc 3049744728.0 2977535064.0 -2.4% GOOD T14697(normal) ghc/alloc 362980213.3 369304512.0 +1.7% T15164(normal) ghc/alloc 1323102752.0 1307480600.0 -1.2% T15304(normal) ghc/alloc 1304607429.3 1291024568.0 -1.0% T16190(normal) ghc/alloc 281450410.7 284878048.0 +1.2% T16577(normal) ghc/alloc 7984960789.3 7811668768.0 -2.2% GOOD T17516(normal) ghc/alloc 1171051192.0 1153649664.0 -1.5% T17836(normal) ghc/alloc 1115569746.7 1098197592.0 -1.6% T17836b(normal) ghc/alloc 54322597.3 55518216.0 +2.2% T17977(normal) ghc/alloc 47071754.7 48403408.0 +2.8% T17977b(normal) ghc/alloc 42579133.3 43977392.0 +3.3% T18923(normal) ghc/alloc 71764237.3 72566240.0 +1.1% T1969(normal) ghc/alloc 784821002.7 773971776.0 -1.4% GOOD T3294(normal) ghc/alloc 1634913973.3 1614323584.0 -1.3% GOOD T4801(normal) ghc/alloc 295619648.0 292776440.0 -1.0% T5321FD(normal) ghc/alloc 278827858.7 276067280.0 -1.0% T5631(normal) ghc/alloc 586618202.7 577579960.0 -1.5% T5642(normal) ghc/alloc 494923048.0 487927208.0 -1.4% T5837(normal) ghc/alloc 37758061.3 39261608.0 +4.0% T9020(optasm) ghc/alloc 257362077.3 254672416.0 -1.0% T9198(normal) ghc/alloc 49313365.3 50603936.0 +2.6% BAD T9233(normal) ghc/alloc 704944258.7 685692712.0 -2.7% GOOD T9630(normal) ghc/alloc 1476621560.0 1455192784.0 -1.5% T9675(optasm) ghc/alloc 443183173.3 433859696.0 -2.1% GOOD T9872a(normal) ghc/alloc 1720926653.3 1693190072.0 -1.6% GOOD T9872b(normal) ghc/alloc 2185618061.3 2162277568.0 -1.1% GOOD T9872c(normal) ghc/alloc 1765842405.3 1733618088.0 -1.8% GOOD TcPlugin_RewritePerf(normal) ghc/alloc 2388882730.7 2365504696.0 -1.0% WWRec(normal) ghc/alloc 607073186.7 597512216.0 -1.6% T9203(normal) run/alloc 107284064.0 102881832.0 -4.1% haddock.Cabal(normal) run/alloc 24025329589.3 23768382560.0 -1.1% haddock.base(normal) run/alloc 25660521653.3 25370321824.0 -1.1% haddock.compiler(normal) run/alloc 74064171706.7 73358712280.0 -1.0% ``` The biggest exception to the rule is T13701 which seems to fluctuate as usual (not unlike T12545). T14697 has a similar quality, being a generated multi-module test. T5837 is small enough that it similarly doesn't measure anything significant besides module loading overhead. T13253 simply does one additional round of Simplification due to Nested CPR. There are also some apparent regressions in T9198, T12234 and PmSeriesG that we (@mpickering and I) were simply unable to reproduce locally. @mpickering tried to run the CI script in a local Docker container and actually found that T9198 and PmSeriesG *improved*. In MRs that were rebased on top this one, like !4229, I did not experience such increases. Let's not get hung up on these regression tests, they were meant to test for asymptotic regressions. The build-cabal test improves by 1.2% in -O0. Metric Increase: T10421 T12234 T12545 T13035 T13056 T13701 T14697 T18923 T5837 T9198 Metric Decrease: ManyConstructors T12545 T12707 T13056 T14683 T16577 T18223 T1969 T3294 T9203 T9233 T9675 T9872a T9872b T9872c T9961 TcPlugin_RewritePerf
-
- May 20, 2021
-
-
In #19822, we realised that the Simplifier's new habit of floating cases into `runRW#` continuations inhibits CPR analysis from giving key functions of `text` the CPR property, such as `singleton`. This patch fixes that by anticipating part of !5667 (Nested CPR) to give `runRW#` the proper CPR transformer it now deserves: Namely, `runRW# (\s -> e)` should have the CPR property iff `e` has it. The details are in `Note [Simplification of runRW#]` in GHC.CoreToStg.Prep. The output of T18086 changed a bit: `panic` (which calls `runRW#`) now has `botCpr`. As outlined in Note [Bottom CPR iff Dead-Ending Divergence], that's OK. Fixes #19822. Metric Decrease: T9872d
-
- Apr 20, 2021
-
-
Sebastian Graf authored
In another small step towards bringing a manageable variant of Nested CPR into GHC, this patch refactors worker/wrapper to be able to exploit Nested CPR signatures. See the new Note [Worker/wrapper for CPR]. The nested code path is currently not triggered, though, because all signatures that we annotate are still flat. So purely a refactoring. I am very confident that it works, because I ripped it off !1866 95% unchanged. A few test case outputs changed, but only it's auxiliary names only. I also added test cases for #18109 and #18401. There's a 2.6% metric increase in T13056 after a rebase, caused by an additional Simplifier run. It appears b1d0b9c saw a similar additional iteration. I think it's just a fluke. Metric Increase: T13056
-
- Mar 20, 2021
-
-
While fixing #19232, it became increasingly clear that the vestigial hack described in `Note [Optimistic field binder CPR]` is complicated and causes reboxing. Rather than make the hack worse, this patch gets rid of it completely in favor of giving deeply unboxed parameters the Nested CPR property. Example: ```hs f :: (Int, Int) -> Int f p = case p of (x, y) | x == y = x | otherwise = y ``` Based on `p`'s `idDemandInfo` `1P(1P(L),1P(L))`, we can see that both fields of `p` will be available unboxed. As a result, we give `p` the nested CPR property `1(1,1)`. When analysing the `case`, the field CPRs are transferred to the binders `x` and `y`, respectively, so that we ultimately give `f` the CPR property. I took the liberty to do a bit of refactoring: - I renamed `CprResult` ("Constructed product result result") to plain `Cpr`. - I Introduced `FlatConCpr` in addition to (now nested) `ConCpr` and and according pattern synonym that rewrites flat `ConCpr` to `FlatConCpr`s, purely for compiler perf reasons. - Similarly for performance reasons, we now store binders with a Top signature in a separate `IntSet`, see `Note [Efficient Top sigs in SigEnv]`. - I moved a bit of stuff around in `GHC.Core.Opt.WorkWrap.Utils` and introduced `UnboxingDecision` to replace the `Maybe DataConPatContext` type we used to return from `wantToUnbox`. - Since the `Outputable Cpr` instance changed anyway, I removed the leading `m` which we used to emit for `ConCpr`. It's just noise, especially now that we may output nested CPRs. Fixes #19398.
-
- Feb 28, 2021
-
-
For years we have lived in a supposedly sweet spot that gave case binders the CPR property, unconditionally. Which is an optimistic hack that is now described in `Historical Note [Optimistic case binder CPR]`. In #19232 the concern was raised that this might do more harm than good and that might be better off simply by taking the CPR property of the scrutinee for the CPR type of the case binder. And indeed that's what we do now. Since `Note [CPR in a DataAlt case alternative]` is now only about field binders, I renamed and garbage collected it into `Note [Optimistic field binder CPR]`. NoFib approves: ``` NoFib Results -------------------------------------------------------------------------------- Program Allocs Instrs -------------------------------------------------------------------------------- anna +0.1% +0.1% nucleic2 -1.2% -0.6% sched 0.0% +0.9% transform -0.0% -0.1% -------------------------------------------------------------------------------- Min -1.2% -0.6% Max +0.1% +0.9% Geometric Mean -0.0% +0.0% ``` Fixes #19232.
-
- Oct 14, 2020
-
-
------------------------- Metric Decrease: T12425 Metric Increase: T17516 -------------------------
-
- Jan 22, 2017
-
-
The `clean_cmd` and `extra_clean` setup functions don't do anything. Remove them from .T files. Created using https://github.com/thomie/refactor-ghc-testsuite. This diff is a test for the .T-file parser/processor/pretty-printer in that repository. find . -name '*.T' -exec ~/refactor-ghc-testsuite/Main "{}" \; Tests containing inline comments or multiline strings are not modified. Preparation for #12223. Test Plan: Harbormaster Reviewers: austin, hvr, simonmar, mpickering, bgamari Reviewed By: mpickering Subscribers: mpickering Differential Revision: https://phabricator.haskell.org/D3000 GHC Trac Issues: #12223
-
- Jun 20, 2016
-
-
Thomas Miedema authored
-
- Jun 28, 2014
-
-
Herbert Valerio Riedel authored
It's a bit confusing to have .gitignore files spread all over the filesystem. This commit tries to consolidate those into one .gitignore file per component. Moreover, we try to describe files to be ignored which happen to have a common identifying pattern by glob patterns. Signed-off-by:
Herbert Valerio Riedel <hvr@gnu.org>
-
- May 30, 2014
-
-
Edward Z. Yang authored
I used this shell command to automatically generate the lists: for i in `git ls-files -o --exclude-standard --directory`; do echo "`basename $i`" >> "`dirname "$i"`/.gitignore"; done Signed-off-by:
Edward Z. Yang <ezyang@cs.stanford.edu>
-
- Nov 28, 2013
-
-
Joachim Breitner authored
...not that we do have nested CPR right now, but when we do, this should better not break.
-
- Sep 08, 2013
-
-
Austin Seipp authored
Authored-by:
David Luposchainsky <dluposchainsky@gmail.com> Signed-off-by:
Austin Seipp <aseipp@pobox.com>
-
- Feb 07, 2013
-
-
Ian Lynagh authored
This allows them to give framework failures. I also had to change how setTestOpts works. Now, rather than applying the options to the directory's "default options", it just stores the options to be applied for each test (i.e. once we know the test name).
-
- Jul 20, 2011
-
-
David Terei authored
-