- Feb 25, 2024
-
-
Ben Gamari authored
Bumps haddock submodule due to testsuite output changes.
-
- Feb 08, 2024
-
-
Here we move a good deal of the implementation of `base` into a new package, `ghc-internal` such that it can be evolved independently from the user-visible interfaces of `base`. While we want to isolate implementation from interfaces, naturally, we would like to avoid turning `base` into a mere set of module re-exports. However, this is a non-trivial undertaking for a variety of reasons: * `base` contains numerous known-key and wired-in things, requiring corresponding changes in the compiler * `base` contains a significant amount of C code and corresponding autoconf logic, which is very fragile and difficult to break apart * `base` has numerous import cycles, which are currently dealt with via carefully balanced `hs-boot` files * We must not break existing users To accomplish this migration, I tried the following approaches: * [Split-GHC.Base]: Break apart the GHC.Base knot to allow incremental migration of modules into ghc-internal: this knot is simply too intertwined to be easily pulled apart, especially given the rather tricky import cycles that it contains) * [Move-Core]: Moving the "core" connected component of base (roughly 150 modules) into ghc-internal. While the Haskell side of this seems tractable, the C dependencies are very subtle to break apart. * [Move-Incrementally]: 1. Move all of base into ghc-internal 2. Examine the module structure and begin moving obvious modules (e.g. leaves of the import graph) back into base 3. Examine the modules remaining in ghc-internal, refactor as necessary to facilitate further moves 4. Go to (2) iterate until the cost/benefit of further moves is insufficient to justify continuing 5. Rename the modules moved into ghc-internal to ensure that they don't overlap with those in base 6. For each module moved into ghc-internal, add a shim module to base with the declarations which should be exposed and any requisite Haddocks (thus guaranteeing that base will be insulated from changes in the export lists of modules in ghc-internal Here I am using the [Move-Incrementally] approach, which is empirically the least painful of the unpleasant options above Bumps haddock submodule. Metric Decrease: haddock.Cabal haddock.base Metric Increase: MultiComponentModulesRecomp T16875 size_hello_artifact
-
- Sep 13, 2022
-
- Aug 19, 2022
-
-
This patch improves the uniformity of error message formatting by printing constraints in quotes, as we do for types. Fix #21167
-
- May 29, 2022
-
-
Teo Camarasu authored
it is still re-exported from GHC.Exts
-
- Dec 03, 2021
-
-
This reverts commit bddecda1. This implements the first step in the plan formulated in #20025 to improve the communication and migration strategy for the proposed changes to Data.List. Requires changing the haddock submodule to update the test output.
-
- Nov 20, 2021
-
- Oct 06, 2021
-
-
There were two problems around `mkDictErr`: 1. An outdated call to `flattenTys` meant that we missed out on some instances. As we no longer flatten type-family applications, the logic is obsolete and can be removed. 2. We reported "out of scope" errors in a poly-kinded situation because `BoxedRep` and `Lifted` were considered out of scope. We fix this by using `pretendNameIsInScope`. fixes #20465
-
- Jun 29, 2021
-
- Apr 01, 2021
-
-
- Remove GHC.OldList - Remove Data.OldList - compat-unqualified-imports is no-op - update haddock submodule
-
- Jan 27, 2021
-
-
The `Applicative` instance is the most important one (for array/vector/sequence indexing purposes), but it deserves all the usual ones. T12545 does silly 1% wibbles both ways, it seems, maybe depending on architecture. Metric Increase: T12545 Metric Decrease: T12545
-
- Jun 17, 2020
-
-
Sylvain Henry authored
* support detection of slow ghc-bignum backend (to replace the detection of integer-simple use). There are still some test cases that the native backend doesn't handle efficiently enough. * remove tests for GMP only functions that have been removed from ghc-bignum * fix test results showing dependent packages (e.g. integer-gmp) or showing suggested instances * fix test using Integer/Natural API or showing internal names
-
- Jun 05, 2020
-
-
Simon Peyton Jones authored
This patch simplifies GHC to use simple subsumption. Ticket #17775 Implements GHC proposal #287 https://github.com/ghc-proposals/ghc-proposals/blob/master/ proposals/0287-simplify-subsumption.rst All the motivation is described there; I will not repeat it here. The implementation payload: * tcSubType and friends become noticably simpler, because it no longer uses eta-expansion when checking subsumption. * No deeplyInstantiate or deeplySkolemise That in turn means that some tests fail, by design; they can all be fixed by eta expansion. There is a list of such changes below. Implementing the patch led me into a variety of sticky corners, so the patch includes several othe changes, some quite significant: * I made String wired-in, so that "foo" :: String rather than "foo" :: [Char] This improves error messages, and fixes #15679 * The pattern match checker relies on knowing about in-scope equality constraints, andd adds them to the desugarer's environment using addTyCsDs. But the co_fn in a FunBind was missed, and for some reason simple-subsumption ends up with dictionaries there. So I added a call to addTyCsDs. This is really part of #18049. * I moved the ic_telescope field out of Implication and into ForAllSkol instead. This is a nice win; just expresses the code much better. * There was a bug in GHC.Tc.TyCl.Instance.tcDataFamInstHeader. We called checkDataKindSig inside tc_kind_sig, /before/ solveEqualities and zonking. Obviously wrong, easily fixed. * solveLocalEqualitiesX: there was a whole mess in here, around failing fast enough. I discovered a bad latent bug where we could successfully kind-check a type signature, and use it, but have unsolved constraints that could fill in coercion holes in that signature -- aargh. It's all explained in Note [Failure in local type signatures] in GHC.Tc.Solver. Much better now. * I fixed a serious bug in anonymous type holes. IN f :: Int -> (forall a. a -> _) -> Int that "_" should be a unification variable at the /outer/ level; it cannot be instantiated to 'a'. This was plain wrong. New fields mode_lvl and mode_holes in TcTyMode, and auxiliary data type GHC.Tc.Gen.HsType.HoleMode. This fixes #16292, but makes no progress towards the more ambitious #16082 * I got sucked into an enormous refactoring of the reporting of equality errors in GHC.Tc.Errors, especially in mkEqErr1 mkTyVarEqErr misMatchMsg misMatchMsgOrCND In particular, the very tricky mkExpectedActualMsg function is gone. It took me a full day. But the result is far easier to understand. (Still not easy!) This led to various minor improvements in error output, and an enormous number of test-case error wibbles. One particular point: for occurs-check errors I now just say Can't match 'a' against '[a]' rather than using the intimidating language of "occurs check". * Pretty-printing AbsBinds Tests review * Eta expansions T11305: one eta expansion T12082: one eta expansion (undefined) T13585a: one eta expansion T3102: one eta expansion T3692: two eta expansions (tricky) T2239: two eta expansions T16473: one eta determ004: two eta expansions (undefined) annfail06: two eta (undefined) T17923: four eta expansions (a strange program indeed!) tcrun035: one eta expansion * Ambiguity check at higher rank. Now that we have simple subsumption, a type like f :: (forall a. Eq a => Int) -> Int is no longer ambiguous, because we could write g :: (forall a. Eq a => Int) -> Int g = f and it'd typecheck just fine. But f's type is a bit suspicious, and we might want to consider making the ambiguity check do a check on each sub-term. Meanwhile, these tests are accepted, whereas they were previously rejected as ambiguous: T7220a T15438 T10503 T9222 * Some more interesting error message wibbles T13381: Fine: one error (Int ~ Exp Int) rather than two (Int ~ Exp Int, Exp Int ~ Int) T9834: Small change in error (improvement) T10619: Improved T2414: Small change, due to order of unification, fine T2534: A very simple case in which a change of unification order means we get tow unsolved constraints instead of one tc211: bizarre impredicative tests; just accept this for now Updates Cabal and haddock submodules. Metric Increase: T12150 T12234 T5837 haddock.base Metric Decrease: haddock.compiler haddock.Cabal haddock.base Merge note: This appears to break the `UnliftedNewtypesDifficultUnification` test. It has been marked as broken in the interest of merging. (cherry picked from commit 66b7b195)
-
- Feb 08, 2020
-
-
- Jun 15, 2018
-
-
Sylvain Henry authored
Add support for built-in Natural literals in Core. - Replace MachInt,MachWord, LitInteger, etc. with a single LitNumber constructor with a LitNumType field - Support built-in Natural literals - Add desugar warning for negative literals - Move Maybe(..) from GHC.Base to GHC.Maybe for module dependency reasons This patch introduces only a few rules for Natural literals (compared to Integer's rules). Factorization of the built-in rules for numeric literals will be done in another patch as this one is already big to review. Test Plan: validate test build with integer-simple Reviewers: hvr, bgamari, goldfire, Bodigrim, simonmar Reviewed By: bgamari Subscribers: phadej, simonpj, RyanGlScott, carter, hsyl20, rwbarton, thomie GHC Trac Issues: #14170, #14465 Differential Revision: https://phabricator.haskell.org/D4212
-
- Dec 01, 2017
-
-
David Feuer authored
Cache `TypeRep k` in each `TrApp` or `TrTyCon` constructor of `TypeRep (a :: k)`. This makes `typeRepKind` cheap. With this change, we won't need any special effort to deserialize typereps efficiently. The downside, of course, is that we make `TypeRep`s slightly larger. Reviewers: austin, hvr, bgamari, simonpj Reviewed By: bgamari, simonpj Subscribers: carter, simonpj, rwbarton, thomie GHC Trac Issues: #14254 Differential Revision: https://phabricator.haskell.org/D4085
-
- Sep 04, 2017
-
-
Herbert Valerio Riedel authored
This is a preparatory refactoring for Semigroup=>Monoid as it prevents a messy .hs-boot file which would interact inconveniently with the buildsystem...
-
- Feb 12, 2016
-
-
Sergei Trofimovich authored
be3d7f66 added Show instance for Callstack. That made a couple of error messages to drift as: instance Show Ordering -- Defined in ‘GHC.Show’ instance Show Integer -- Defined in ‘GHC.Show’ ...plus 23 others - ...plus 20 instances involving out-of-scope types + ...plus 21 instances involving out-of-scope types Signed-off-by:
Sergei Trofimovich <siarheit@google.com>
-
- Feb 09, 2016
-
-
Ben Gamari authored
Previously "types" was inappropriately made plural instead of "instance", instance Eq Ordering -- Defined in ‘GHC.Classes’ ...plus 24 others ...plus 13 instance involving out-of-scope typess
-
- Feb 06, 2016
-
-
Eric Seidel authored
Test Plan: ``` ghci> import GHC.Stack ghci> SrcLoc "f" "b" "c" 1 2 3 4 SrcLoc {srcLocPackage = "f", srcLocModule = "b", srcLocFile = "c", srcLocStartLine = 1, srcLocStartCol = 2, srcLocEndLine = 3, srcLocEndCol = 4} ``` Reviewers: austin, hvr, bgamari Reviewed By: bgamari Subscribers: thomie Projects: #ghc Differential Revision: https://phabricator.haskell.org/D1886 GHC Trac Issues: #11510
-
- Jan 27, 2016
-
-
Richard Eisenberg authored
The idea here is described in [wiki:Typechecker]. Briefly, this refactor keeps solid track of "synthesis" mode vs "checking" in GHC's bidirectional type-checking algorithm. When in synthesis mode, the expected type is just an IORef to write to. In addition, this patch does a significant reworking of RebindableSyntax, allowing much more freedom in the types of the rebindable operators. For example, we can now have `negate :: Int -> Bool` and `(>>=) :: m a -> (forall x. a x -> m b) -> m b`. The magic is in tcSyntaxOp. This addresses tickets #11397, #11452, and #11458. Tests: typecheck/should_compile/{RebindHR,RebindNegate,T11397,T11458} th/T11452
-
- Dec 15, 2015
-
-
Commit 547c5971 modifies the pretty-printer to render names from a set of core packages (`base`, `ghc-prim`, `template-haskell`) as unqualified. The idea here was that many of these names typically are not in scope but are well-known by the user and therefore qualification merely introduces noise. This, however, is a very large hammer and potentially breaks any consumer who relies on parsing GHC output (hence #11208). This commit partially reverts this change, now only printing `Constraint` (which appears quite often in errors) as unqualified. Fixes #11208. Updates tests in `array` submodule. Test Plan: validate Reviewers: hvr, thomie, austin Subscribers: thomie Differential Revision: https://phabricator.haskell.org/D1619 GHC Trac Issues: #11208
-
- Oct 30, 2015
-
-
This is the second attempt at merging D757. This patch implements the idea floated in Trac #9858, namely that we should generate type-representation information at the data type declaration site, rather than when solving a Typeable constraint. However, this turned out quite a bit harder than I expected. I still think it's the right thing to do, and it's done now, but it was quite a struggle. See particularly * Note [Grand plan for Typeable] in TcTypeable (which is a new module) * Note [The overall promotion story] in DataCon (clarifies existing stuff) The most painful bit was that to generate Typeable instances (ie TyConRepName bindings) for every TyCon is tricky for types in ghc-prim etc: * We need to have enough data types around to *define* a TyCon * Many of these types are wired-in Also, to minimise the code generated for each data type, I wanted to generate pure data, not CAFs with unpackCString# stuff floating about. Performance ~~~~~~~~~~~ Three perf/compiler tests start to allocate quite a bit more. This isn't surprising, because they all allocate zillions of data types, with practically no other code, esp. T1969 * T1969: GHC allocates 19% more * T4801: GHC allocates 13% more * T5321FD: GHC allocates 13% more * T9675: GHC allocates 11% more * T783: GHC allocates 11% more * T5642: GHC allocates 10% more I'm treating this as acceptable. The payoff comes in Typeable-heavy code. Remaining to do ~~~~~~~~~~~~~~~ * I think that "TyCon" and "Module" are over-generic names to use for the runtime type representations used in GHC.Typeable. Better might be "TrTyCon" and "TrModule". But I have not yet done this * Add more info the the "TyCon" e.g. source location where it was defined * Use the new "Module" type to help with Trac Trac #10068 * It would be possible to generate TyConRepName (ie Typeable instances) selectively rather than all the time. We'd need to persist the information in interface files. Lacking a motivating reason I have not done this, but it would not be difficult. Refactoring ~~~~~~~~~~~ As is so often the case, I ended up refactoring more than I intended. In particular * In TyCon, a type *family* (whether type or data) is repesented by a FamilyTyCon * a algebraic data type (including data/newtype instances) is represented by AlgTyCon This wasn't true before; a data family was represented as an AlgTyCon. There are some corresponding changes in IfaceSyn. * Also get rid of the (unhelpfully named) tyConParent. * In TyCon define 'Promoted', isomorphic to Maybe, used when things are optionally promoted; and use it elsewhere in GHC. * Cleanup handling of knownKeyNames * Each TyCon, including promoted TyCons, contains its TyConRepName, if it has one. This is, in effect, the name of its Typeable instance. Updates haddock submodule Test Plan: Let Harbormaster validate Reviewers: austin, hvr, goldfire Subscribers: goldfire, thomie Differential Revision: https://phabricator.haskell.org/D1404 GHC Trac Issues: #9858
-
- Oct 29, 2015
-
-
Ben Gamari authored
This reverts commit bef2f03e. This merge was botched Also reverts haddock submodule.
-
Ben Gamari authored
This patch implements the idea floated in Trac #9858, namely that we should generate type-representation information at the data type declaration site, rather than when solving a Typeable constraint. However, this turned out quite a bit harder than I expected. I still think it's the right thing to do, and it's done now, but it was quite a struggle. See particularly * Note [Grand plan for Typeable] in TcTypeable (which is a new module) * Note [The overall promotion story] in DataCon (clarifies existing stuff) The most painful bit was that to generate Typeable instances (ie TyConRepName bindings) for every TyCon is tricky for types in ghc-prim etc: * We need to have enough data types around to *define* a TyCon * Many of these types are wired-in Also, to minimise the code generated for each data type, I wanted to generate pure data, not CAFs with unpackCString# stuff floating about. Performance ~~~~~~~~~~~ Three perf/compiler tests start to allocate quite a bit more. This isn't surprising, because they all allocate zillions of data types, with practically no other code, esp. T1969 * T3294: GHC allocates 110% more (filed #11030 to track this) * T1969: GHC allocates 30% more * T4801: GHC allocates 14% more * T5321FD: GHC allocates 13% more * T783: GHC allocates 12% more * T9675: GHC allocates 12% more * T5642: GHC allocates 10% more * T9961: GHC allocates 6% more * T9203: Program allocates 54% less I'm treating this as acceptable. The payoff comes in Typeable-heavy code. Remaining to do ~~~~~~~~~~~~~~~ * I think that "TyCon" and "Module" are over-generic names to use for the runtime type representations used in GHC.Typeable. Better might be "TrTyCon" and "TrModule". But I have not yet done this * Add more info the the "TyCon" e.g. source location where it was defined * Use the new "Module" type to help with Trac Trac #10068 * It would be possible to generate TyConRepName (ie Typeable instances) selectively rather than all the time. We'd need to persist the information in interface files. Lacking a motivating reason I have not done this, but it would not be difficult. Refactoring ~~~~~~~~~~~ As is so often the case, I ended up refactoring more than I intended. In particular * In TyCon, a type *family* (whether type or data) is repesented by a FamilyTyCon * a algebraic data type (including data/newtype instances) is represented by AlgTyCon This wasn't true before; a data family was represented as an AlgTyCon. There are some corresponding changes in IfaceSyn. * Also get rid of the (unhelpfully named) tyConParent. * In TyCon define 'Promoted', isomorphic to Maybe, used when things are optionally promoted; and use it elsewhere in GHC. * Cleanup handling of knownKeyNames * Each TyCon, including promoted TyCons, contains its TyConRepName, if it has one. This is, in effect, the name of its Typeable instance. Requires update of the haddock submodule. Differential Revision: https://phabricator.haskell.org/D757
-
- Oct 08, 2015
-
-
kanetw authored
Improved error messages are only printed when the old message would be "No instance for...", since they're not as helpful for "Could not deduce..." No special test case as error messages are tested by other tests already. Signed-off-by:
David Kraeutmann <kane@kane.cx> Reviewed By: austin, goldfire Differential Revision: https://phabricator.haskell.org/D1182 GHC Trac Issues: #10733
-
- Sep 03, 2015
-
-
Jan Stolarek authored
For details see #6018, Phab:D202 and the wiki page: https://ghc.haskell.org/trac/ghc/wiki/InjectiveTypeFamilies This patch also wires-in Maybe data type and updates haddock submodule. Test Plan: ./validate Reviewers: simonpj, goldfire, austin, bgamari Subscribers: mpickering, bgamari, alanz, thomie, goldfire, simonmar, carter Differential Revision: https://phabricator.haskell.org/D202 GHC Trac Issues: #6018
-
- Sep 02, 2015
-
-
Simon Peyton Jones authored
Summary: See Note [Displaying potential instances]. Reviewers: austin Subscribers: KaneTW, thomie Differential Revision: https://phabricator.haskell.org/D1176
-
- Apr 07, 2015
-
-
Simon Peyton Jones authored
-
- Dec 19, 2014
-
-
Herbert Valerio Riedel authored
These two facilities provide some means to avoid the double-breakage caused by first by the deprecation (see #2496), and then again by the actual future field-removal. See also https://groups.google.com/d/msg/haskell-core-libraries/q9H-QlL_gnE/4lbb_mBjre8J for details about this library addition. Reviewed By: ekmett Differential Revision: https://phabricator.haskell.org/D577
-
- Nov 19, 2014
-
-
Edward Z. Yang authored
Summary: The intent of this commit is to make test suite cases more stable, so that it doesn't matter what order we load interface files in, the test output doesn't change. Signed-off-by:
Edward Z. Yang <ezyang@cs.stanford.edu> Test Plan: validate Reviewers: simonpj, austin Subscribers: thomie, carter Differential Revision: https://phabricator.haskell.org/D484
-
- Aug 28, 2014
-
-
Simon Peyton Jones authored
I this this arises from my de-orphaning the Enum Word instance
-
- May 19, 2014
-
-
Austin Seipp authored
Also update a few tests, since containers now has IsList instances. Signed-off-by:
Austin Seipp <austin@well-typed.com>
-
- Apr 20, 2014
-
-
Austin Seipp authored
Now that we're in development mode, Applicative will soon be a superclass of Monad in HEAD. So let's go ahead and deprecate the -fno-warn-amp flag, remove the checks, and tweak a few tests Signed-off-by:
Austin Seipp <austin@well-typed.com>
-
- Feb 25, 2014
-
-
Herbert Valerio Riedel authored
This matches GCC's choice of Unicode quotation marks (i.e. U+2018 and U+2019) and therefore looks more familiar on the console. This addresses #2507. Signed-off-by:
Herbert Valerio Riedel <hvr@gnu.org>
-
- Sep 12, 2013
-
-
Austin Seipp authored
The perf tests can probably be rechecked and tightened a little; I fixed them with AMP the other day but some changes since then have made them wibble perhaps. Signed-off-by:
Austin Seipp <austin@well-typed.com>
-
- Feb 24, 2013
-
-
Ian Lynagh authored
-
- Feb 14, 2013
-
-
Simon Peyton Jones authored
-