- Sep 21, 2023
-
-
- Sep 05, 2023
-
-
Fixes #23930
-
- Aug 22, 2023
-
-
- Jun 13, 2023
-
-
Tracking ticket: #23059 This runs compile_and_run tests with optimised code with bytecode interpreter Changed submodules: hpc, process Co-authored-by:
Torsten Schmits <git@tryp.io>
-
- May 25, 2023
-
-
The tests were originally skipped because ghci used not to support unboxed tuples/sums.
-
- Apr 01, 2023
-
-
Tracking ticket: #20117 MR: !10183 This converts uses of `mkTcRnUnknownMessage` to newly added constructors of `TcRnMessage`.
-
- Mar 22, 2023
-
-
- Feb 02, 2023
-
-
This MR runs the testsuite for the JS backend. Note that this is a temporary solution until !9515 is merged. Key point: The CI runs hadrian on the built cross compiler _but not_ on the bindist. Other Highlights: - stm submodule gets a bump to mark tests as broken - several tests are marked as broken or are fixed by adding more - conditions to their test runner instance. List of working commit messages: CI: test cross target _and_ emulator CI: JS: Try run testsuite with hadrian JS.CI: cleanup and simplify hadrian invocation use single bracket, print info JS CI: remove call to test_compiler from hadrian don't build haddock JS: mark more tests as broken Tracked in #22576 JS testsuite: don't skip sum_mod test Its expected to fail, yet we skipped it which automatically makes it succeed leading to an unexpected success, JS testsuite: don't mark T12035j as skip leads to an unexpected pass JS testsuite: remove broken on T14075 leads to unexpected pass JS testsuite: mark more tests as broken JS testsuite: mark T11760 in base as broken JS testsuite: mark ManyUnbSums broken submodules: bump process and hpc for JS tests Both submodules has needed tests skipped or marked broken for th JS backend. This commit now adds these changes to GHC. See: HPC: hpc/hpc!21 Process: https://github.com/haskell/process/pull/268 remove js_broken on now passing tests separate wasm and js backend ci test: T11760: add threaded, non-moving only_ways test: T10296a add req_c T13894: skip for JS backend tests: jspace, T22333: mark as js_broken(22573) test: T22513i mark as req_th stm submodule: mark stm055, T16707 broken for JS tests: js_broken(22374) on unpack_sums_6, T12010 dont run diff on JS CI, cleanup fixup: More CI cleanup fix: align text to master fix: align exceptions submodule to master CI: Bump DOCKER_REV Bump to ci-images commit that has a deb11 build with node. Required for !9552 testsuite: mark T22669 as js_skip See #22669 This test tests that .o-boot files aren't created when run in using the interpreter backend. Thus this is not relevant for the JS backend. testsuite: mark T22671 as broken on JS See #22835 base.testsuite: mark Chan002 fragile for JS see #22836 revert: submodule process bump bump stm submodule New hash includes skips for the JS backend. testsuite: mark RnPatternSynonymFail broken on JS Requires TH: - see !9779 - and #22261 compiler: GHC.hs ifdef import Utils.Panic.Plain
-
- Jan 31, 2023
-
-
Fixes #11270
-
- Nov 30, 2022
-
-
Unboxed sums might store a Int8# value as Int64#. This patch makes sure we keep track of the actual value type. See Note [Casting slot arguments] for the details.
-
- Nov 29, 2022
-
-
Sylvain Henry authored
Add JS backend adapted from the GHCJS project by Luite Stegeman. Some features haven't been ported or implemented yet. Tests for these features have been disabled with an associated gitlab ticket. Bump array submodule Work funded by IOG. Co-authored-by:
Jeffrey Young <jeffrey.young@iohk.io> Co-authored-by:
Luite Stegeman <stegeman@gmail.com> Co-authored-by:
Josh Meredith <joshmeredith2008@gmail.com>
-
`grep -q` closes stdin as soon as it finds the pattern it is looking for, resulting in #22484.
-
This test is explicitly dependent upon runtime, which is generally not appropriate given that the testsuite is run in parallel and generally saturates the CPU.
-
- Nov 25, 2022
-
-
Before this patch, GHC unconditionally printed ticks before promoted data constructors: ghci> type T = True -- unticked (user-written) ghci> :kind! T T :: Bool = 'True -- ticked (compiler output) After this patch, GHC prints ticks only when necessary: ghci> type F = False -- unticked (user-written) ghci> :kind! F F :: Bool = False -- unticked (compiler output) ghci> data False -- introduce ambiguity ghci> :kind! F F :: Bool = 'False -- ticked by necessity (compiler output) The old behavior can be enabled by -fprint-redundant-promotion-ticks. Summary of changes: * Rename PrintUnqualified to NamePprCtx * Add QueryPromotionTick to it * Consult the GlobalRdrEnv to decide whether to print a tick (see mkPromTick) * Introduce -fprint-redundant-promotion-ticks Co-authored-by:
Artyom Kuznetsov <hi@wzrd.ht>
-
- Nov 24, 2022
-
-
- Nov 14, 2022
-
-
This is based on osa's unpack_sums PR from ages past. The meat of the patch is implemented in dataConArgUnpackSum and described in Note [UNPACK for sum types].
-
- Oct 26, 2022
-
-
Sylvain Henry authored
Necessary for newer cross-compiling backends (JS, Wasm) that don't support TH yet.
-
- Oct 19, 2022
-
-
As noted in #22297, SIMD vector registers can be used to store different kinds of values, e.g. xmm1 can be used both to store integer and floating point values. The Cmm type system doesn't properly account for this, so we weaken the Cmm register assignment lint check to only compare widths when comparing a vector type with its allocated vector register.
- Sep 13, 2022
-
- Apr 01, 2022
-
-
Users are supposed to import GHC.Exts rather than GHC.Prim. Part of #18749.
-
- Jan 12, 2022
-
-
The pretty-printing of partially applied unboxed sums was incorrect, as we incorrectly dropped the first half of the arguments, even for a partial application such as (# | #) @IntRep @DoubleRep Int# which lead to the nonsensical (# DoubleRep | Int# #). This patch also allows users to write unboxed sum type constructors such as (# | #) :: TYPE r1 -> TYPE r2 -> TYPE (SumRep '[r1,r2]). Fixes #20858 and #20859.
-
- Dec 28, 2021
-
-
Matthew Pickering authored
Multiple home units allows you to load different packages which may depend on each other into one GHC session. This will allow both GHCi and HLS to support multi component projects more naturally. Public Interface ~~~~~~~~~~~~~~~~ In order to specify multiple units, the -unit @⟨filename⟩ flag is given multiple times with a response file containing the arguments for each unit. The response file contains a newline separated list of arguments. ``` ghc -unit @unitLibCore -unit @unitLib ``` where the `unitLibCore` response file contains the normal arguments that cabal would pass to `--make` mode. ``` -this-unit-id lib-core-0.1.0.0 -i -isrc LibCore.Utils LibCore.Types ``` The response file for lib, can specify a dependency on lib-core, so then modules in lib can use modules from lib-core. ``` -this-unit-id lib-0.1.0.0 -package-id lib-core-0.1.0.0 -i -isrc Lib.Parse Lib.Render ``` Then when the compiler starts in --make mode it will compile both units lib and lib-core. There is also very basic support for multiple home units in GHCi, at the moment you can start a GHCi session with multiple units but only the :reload is supported. Most commands in GHCi assume a single home unit, and so it is additional work to work out how to modify the interface to support multiple loaded home units. Options used when working with Multiple Home Units There are a few extra flags which have been introduced specifically for working with multiple home units. The flags allow a home unit to pretend it’s more like an installed package, for example, specifying the package name, module visibility and reexported modules. -working-dir ⟨dir⟩ It is common to assume that a package is compiled in the directory where its cabal file resides. Thus, all paths used in the compiler are assumed to be relative to this directory. When there are multiple home units the compiler is often not operating in the standard directory and instead where the cabal.project file is located. In this case the -working-dir option can be passed which specifies the path from the current directory to the directory the unit assumes to be it’s root, normally the directory which contains the cabal file. When the flag is passed, any relative paths used by the compiler are offset by the working directory. Notably this includes -i and -I⟨dir⟩ flags. -this-package-name ⟨name⟩ This flag papers over the awkward interaction of the PackageImports and multiple home units. When using PackageImports you can specify the name of the package in an import to disambiguate between modules which appear in multiple packages with the same name. This flag allows a home unit to be given a package name so that you can also disambiguate between multiple home units which provide modules with the same name. -hidden-module ⟨module name⟩ This flag can be supplied multiple times in order to specify which modules in a home unit should not be visible outside of the unit it belongs to. The main use of this flag is to be able to recreate the difference between an exposed and hidden module for installed packages. -reexported-module ⟨module name⟩ This flag can be supplied multiple times in order to specify which modules are not defined in a unit but should be reexported. The effect is that other units will see this module as if it was defined in this unit. The use of this flag is to be able to replicate the reexported modules feature of packages with multiple home units. Offsetting Paths in Template Haskell splices ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When using Template Haskell to embed files into your program, traditionally the paths have been interpreted relative to the directory where the .cabal file resides. This causes problems for multiple home units as we are compiling many different libraries at once which have .cabal files in different directories. For this purpose we have introduced a way to query the value of the -working-dir flag to the Template Haskell API. By using this function we can implement a makeRelativeToProject function which offsets a path which is relative to the original project root by the value of -working-dir. ``` import Language.Haskell.TH.Syntax ( makeRelativeToProject ) foo = $(makeRelativeToProject "./relative/path" >>= embedFile) ``` > If you write a relative path in a Template Haskell splice you should use the makeRelativeToProject function so that your library works correctly with multiple home units. A similar function already exists in the file-embed library. The function in template-haskell implements this function in a more robust manner by honouring the -working-dir flag rather than searching the file system. Closure Property for Home Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ For tools or libraries using the API there is one very important closure property which must be adhered to: > Any dependency which is not a home unit must not (transitively) depend on a home unit. For example, if you have three packages p, q and r, then if p depends on q which depends on r then it is illegal to load both p and r as home units but not q, because q is a dependency of the home unit p which depends on another home unit r. If you are using GHC by the command line then this property is checked, but if you are using the API then you need to check this property yourself. If you get it wrong you will probably get some very confusing errors about overlapping instances. Limitations of Multiple Home Units ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ There are a few limitations of the initial implementation which will be smoothed out on user demand. * Package thinning/renaming syntax is not supported * More complicated reexports/renaming are not yet supported. * It’s more common to run into existing linker bugs when loading a large number of packages in a session (for example #20674, #20689) * Backpack is not yet supported when using multiple home units. * Dependency chasing can be quite slow with a large number of modules and packages. * Loading wired-in packages as home units is currently not supported (this only really affects GHC developers attempting to load template-haskell). * Barely any normal GHCi features are supported, it would be good to support enough for ghcid to work correctly. Despite these limitations, the implementation works already for nearly all packages. It has been testing on large dependency closures, including the whole of head.hackage which is a total of 4784 modules from 452 packages. Internal Changes ~~~~~~~~~~~~~~~~ * The biggest change is that the HomePackageTable is replaced with the HomeUnitGraph. The HomeUnitGraph is a map from UnitId to HomeUnitEnv, which contains information specific to each home unit. * The HomeUnitEnv contains: - A unit state, each home unit can have different package db flags - A set of dynflags, each home unit can have different flags - A HomePackageTable * LinkNode: A new node type is added to the ModuleGraph, this is used to place the linking step into the build plan so linking can proceed in parralel with other packages being built. * New invariant: Dependencies of a ModuleGraphNode can be completely determined by looking at the value of the node. In order to achieve this, downsweep now performs a more complete job of downsweeping and then the dependenices are recorded forever in the node rather than being computed again from the ModSummary. * Some transitive module calculations are rewritten to use the ModuleGraph which is more efficient. * There is always an active home unit, which simplifies modifying a lot of the existing API code which is unit agnostic (for example, in the driver). The road may be bumpy for a little while after this change but the basics are well-tested. One small metric increase, which we accept and also submodule update to haddock which removes ExtendedModSummary. Closes #10827 ------------------------- Metric Increase: MultiLayerModules ------------------------- Co-authored-by:
Fendor <power.walross@gmail.com>
-
- Nov 17, 2021
-
-
Fixes #20541 by making mkTyConApp do more sharing of types. In particular, replace * BoxedRep Lifted ==> LiftedRep * BoxedRep Unlifted ==> UnliftedRep * TupleRep '[] ==> ZeroBitRep * TYPE ZeroBitRep ==> ZeroBitType In each case, the thing on the right is a type synonym for the thing on the left, declared in ghc-prim:GHC.Types. See Note [Using synonyms to compress types] in GHC.Core.Type. The synonyms for ZeroBitRep and ZeroBitType are new, but absolutely in the same spirit as the other ones. (These synonyms are mainly for internal use, though the programmer can use them too.) I also renamed GHC.Core.Ty.Rep.isVoidTy to isZeroBitTy, to be compatible with the "zero-bit" nomenclature above. See discussion on !6806. There is a tricky wrinkle: see GHC.Core.Types Note [Care using synonyms to compress types] Compiler allocation decreases by up to 0.8%.
-
- Apr 27, 2021
-
-
-
Previously Unarise would happily project lifted and unlifted fields to lifted slots. This broke horribly in #19645, where a ByteArray# was passed in a lifted slot and consequently entered. The simplest way to fix this is what I've done here, distinguishing between lifted and unlifted slots in unarise. However, one can imagine more clever solutions, where we coerce the binder to the correct levity with respect to the sum's tag. I doubt that this would be worth the effort. Fixes #19645.
-
- Mar 20, 2021
-
-
Metric Increase: T10370 parsing001 Updates haddock submodule
-
- Mar 07, 2021
-
-
Ben Gamari authored
This implements the BoxedRep proposal, refactoring the `RuntimeRep` hierarchy from: ```haskell data RuntimeRep = LiftedPtrRep | UnliftedPtrRep | ... ``` to ```haskell data RuntimeRep = BoxedRep Levity | ... data Levity = Lifted | Unlifted ``` Updates binary, haddock submodules. Closes #17526. Metric Increase: T12545
-
- Dec 15, 2020
-
-
Ben Gamari authored
This was inadvertently merged. This reverts commit 6c2eb223.
-
- Dec 14, 2020
-
-
This implements the BoxedRep proposal, refacoring the `RuntimeRep` hierarchy from: ```haskell data RuntimeRep = LiftedPtrRep | UnliftedPtrRep | ... ``` to ```haskell data RuntimeRep = BoxedRep Levity | ... data Levity = Lifted | Unlifted ``` Closes #17526.
-
- Sep 10, 2020
-
-
Previously, we desugared and coverage checked plain guard trees as described in Lower Your Guards. That caused (in !3849) quite a bit of pain when we need to partially recover tree structure of the input syntax to return covered sets for long-distance information, for example. In this refactor, I introduced a guard tree variant for each relevant source syntax component of a pattern-match (mainly match groups, match, GRHS, empty case, pattern binding). I made sure to share as much coverage checking code as possible, so that the syntax-specific checking functions are just wrappers around the more substantial checking functions for the LYG primitives (`checkSequence`, `checkGrds`). The refactoring payed off in clearer code and elimination of all panics related to assumed guard tree structure and thus fixes #18565. I also took the liberty to rename and re-arrange the order of functions and comments in the module, deleted some dead and irrelevant Notes, wrote some new ones and gave an overview module haddock.
-
- Aug 12, 2020
-
-
- put panic related functions into GHC.Utils.Panic - put trace related functions using DynFlags in GHC.Driver.Ppr One step closer making Outputable fully independent of DynFlags. Bump haddock submodule
-
- Jul 23, 2020
-
-
There's one backwards compatibility issue: GHC.Prim no longer exports Void#, we now manually re-export it from GHC.Exts.
-
- Apr 26, 2020
-
-
Update Haddock submodule Metric Increase: haddock.compiler
-
- Apr 18, 2020
-
-
Sylvain Henry authored
* SysTools * Parser * GHC.Builtin * GHC.Iface.Recomp * Settings Update Haddock submodule Metric Decrease: Naperian parsing001
-
- Mar 29, 2020
-
-
Update Haddock submodule Metric Increase: haddock.compiler
-
- Feb 22, 2020
-
-
submodule updates: nofib, haddock
-
- Dec 31, 2019
-
-
- Jan 30, 2019
-
-
Ben Gamari authored
This eliminates most uses of run_command in the testsuite in favor of the more structured makefile_test.
-